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Abstract. According to quantum electrodynamics the vacuum shows polarization properties 
because of the presence of virtual electron-positron pairs. These properties are investigated 
in the presence of an intense plane wave field, such as is produced by a laser. The laser wave 
is considered as an external prescribed field and its interaction with the electron-positron 
field is treated without reference to perturbation theory. The vacuum polarization tensor is 
computed to second order in the fine structure constant in the form of a double integral. The 
Dyson equation for the photon propagator is solved by an eigenfunction expansion. For a 
plane laser wave of infinite extent and circular polarization the results are relatively simple 
and explicit. Analytical properties of the photon propagator are discussed. The effects of 
vacuum polarization on an additional weak wave field (a non-laser photon) can be des- 
cribed approximately by two complex indices of refraction. The corresponding dispersion 
curves resemble qualitatively those of ordinary optical media. Quantitatively, however, the 
effects are small and will show up only d the non-laser photon has a very high energy. If the 
laser frequency could be raised into the x-ray region, the effects could be observed at moderate 
photon energies. 

1. Introduction 

Quantum electrodynamics in strong external fields has found renewed interest of late, 
mainly for two reasons : (i) from the experimental point of view, it may be possible that 
fields which are ‘strong’ in the sense of quantum electrodynamics can be found eg on 
pulsars or near the surface of heavy nuclei; (ii) as for the theory it may be interesting to 
see what happens if an expansion parameter becomes large. The rapid increase in avail- 
able laser intensities suggests the consideration of lasers as sources of strong fields. 
While the simple processes of quantum electrodynamics (Compton scattering, pair 
creation etc) have been extensively investigated (Eberly 1969, this review paper contains 
references up to 1968 ; see also Denisov and Fedorov 1967, Oleinik 1967, Ehlotzky 
1970a, b, Reiss 1970, 1971, 1972), relatively little is known about radiative corrections 
implied by the structure of the vacuum in quantum electrodynamics. Here we concen- 
trate on vacuum polarization and the photon propagator. An eigenvector representation 
for both objects yields information on the dispersion laws of the medium ‘vacuum plus 
laser field’ which govern the propagation of photons (9 3). Similar investigations for 
constant fields (Newton 1954a, b, Minguzzi 1956, 1957, 1958, Baier and Breitenlohner 
1967a. b, Narozhnyi 1968, Batalin and Shabad 1968, 1971, Shabad 1971, Adler 1971), 
in particular for crossed fields (Ritus l969,1972a, b, Morozov and Ritus 1975) have been 
carried out in the past. We shall argue, however, that the approximation by a constant 
crossed field is not allowed in the region where the effects of vacuum polarization become 
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measurable. Some partial results for laser fields have been obtained by other authors 
before (Oleinik 1967, Yakovlev 1966). 

Next we give a representation of the vacuum polarization tensor as a double integral 
in the general case (§ 4). For an infinite plane wave train of circular polarization this can 
be further reduced. Due to a special symmetry (Richard 1972) the structure of the 
propagator is very simple in this case: besides the usual diagonal part there are only 
two contributions, which correspond to a frequency change by two units (in terms of 
the laser frequency) accompanied by a helicity flip. The analytical structure shows 
(complex) poles and some traces of threshold behaviour ( $ 5 ) .  This structure differs 
from the corresponding one found for constant crossed fields. 

I t  is well known that the vacuum of quantum electrodynamics behaves in some sense 
like a nonlinear dielectric medium. Some of these aspects are contained in the vacuum 
polarization tensor and/or the photon propagator as studied here. Among the numerous 
physical implications we shall consider only the superposition of a weak wave field 
onto the laser field. Because of vacuum polarization a linear superposition principle 
does not apply : the wave field will see the polarization of virtual pairs influenced by the 
laser. This effect is of second order in the elementary charge e. I n  addition there are 
higher-order terms ( -  e3, e4 etc) which contain higher powers of the wave field and allow 
for a fusion or fission of (non-laser) quanta in the presence of the laser. If these terms are 
neglected, we obtain a linear theory for a ‘medium’ consisting of the vacuum plus the laser 
field. Maxwell’s equations can be solved and it is possible to formulate approximate 
dispersion laws ( Q  6). Unfortunately the magnitude of the effects is not sufficient to make 
them observable at present. 

2. Description of the laser field, symmetries 

Thelaser field will bedescribed by aplane waveofwavelength ;.(wavevector k , ,  ko  = 2n/ i )  
characterized by the vector potential 

ALL’(x) = aei,,ai((). (2.1) 

Here ez, ,  (i = 1.2)  are two polarization vectors orthogonal to k ,  

( k .  e,) = 0 

and we use the summation convention for repeated polarization indices ; ai ( ( )  is a certain 
function of its argument 5 = ( k ,  x) (see below) and the amplitude factor a is determined 
by the intensity of the laser beam. We shall consider A:’ as a classical external field, 
which is an excellent approximation in this context (Brown and Kibble 1964). 

The field tensor of the laser field is 

F$’(x) = afi.,,.h(t) (2 .2)  
where we have 

(2.3) 
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and we have the relations 
k /x , , , v  = 0, f ""f Tg' - kJ1kvcij 

frfj:," = f :p"f = k"k'6ij. 

The Poynting vector of the laser field is 

(2.5) 

From this we can compute in practical cases the magnitude of effects. An appropriate 
expansion parameter is the (classical, dimensionless) quantity 

(2.6) 

where e = hcc is the elementary charge and me = K ~ / C  is the rest mass of the electron. 
If the laser is characterized by an illumination per square wavelength I we have 

v 2  N 7 x10-"I 

where I is given in Wi.2(m)m-2. I t  has to be noted that this parameter is not small for 
available high-intensity lasers. 

It will be convenient to use light-like components (Neville and Rohrlich 1971). 
For this purpose we introduce a fixed orthogonal vierbein in Minkowski space 

where we have 

n2 = ri2 = (n ,  e i )  = (A, e i )  = 0,  ( n , A )  = 1, (e , .  e,) = -6(, 

An arbitrary vector pp can be represented according to 

p" = npp,+iipp,+eiflpi (2.8) 

P" = (4 P)> P u  = h P ) ,  p L  = -(el, P). (2.9) 

in terms of its 'light-like components' 

For the coordinate vector we have t = wxuJ2. 
The advantage of this formalism (especially with respect to boundary conditions for 

scattering problems) has been stressed by Neville and Rohrlich. Scattering problems 
can be defined for laser pulses of finite duration: 

(2.10) 

As a consequence of translation invariance along the directions x,, xi the components 
l'", PI of the total energy momentum vector P,, are conserved for all reactions involving 
particles in laser beams. 

In general we shall consider finite laser pulses (2.10) without specifying a, further. 
Sometimes it will be convenient, however, to consider an infinite plane wave train as an 
approximation to the case of practical interest, where t1 -to is large. In this case the 
ai are periodic functions of 5. As a consequence of the lattice-like translational invariance, 

ai ( ( )  = 0 for t < to and 5 > 5, with fixed to, 5,. 
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the component P,,j(wv’2) is then conserved modulo an integer (Zeldovich 1966) so that 
we have 

I = 0, f l ,  * 2  , . . . .  P,-P, = lk, ,  

a , t o  = cos t, a 2 ( t )  = -sin 5 (2.11) 

For a circularly polarized plane wave train 

the expressions to be considered will have the simplest form. In this case the problem 
has an additional symmetry : the external field remains invariant under a translation by 
an arbitrary vector b plus a rotation about the direction of propagation k by the angle 

Finally we want to note that the case of constant crossed fields as considered by Ritus 
- ( k  . 6). 

(1969, 1972a, b) can be obtained eg by taking 

a1(0 = = 5 .  (2.12) 

In this case one has to identify awJ2 with the magnitude of the field strength. 

3. Photon propagation 

The polarization phenomena, which are induced in the vacuum due to the action of an 
external field on the virtual electron-positron pairs, can be investigated by means of the 
photon propagator D’, which is a solution of the Schwinger-Dyson equation 

D; , (x ,  y )  = D,,(x - y ) +  c2 d4z d4z’D,,(x - z)xpu(z ,  z’)Db,(z’. y) .  (3.1) 

Here D is the free propagator and 7c is the vacuum polarization tensor. To lowest-order 
perturbation theory we have 

n,,(x,y) = - i  Tr;,,G(x,y)y,G(y,x)+ . . . (3.2) 

where G is the electron propagator in the presence of the external field. We shall now 
indicate how equation (3.1) can be resolved for a general external field for given II. We 
shall consider the Fourier transform 

(correspondingly for D’). Because of gauge invariance we have 

p”ii,,(P, P’) = ii,”(P, P’)P” = 0. 

fipv(p, P’) = i i , , p ( - p ’ ,  -PI. 

(3.4) 

In addition rt has the symmetry property 

(3.5) 
The latter property may be traced back to the corresponding one for the photon propa- 
gator, which is evident in coordinate space. 

We define now left and right eigenvectors of 
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Left and right eigenvectors corresponding to different eigenvalues t i i (q)  can be shown to 
be orthogonal. By means of the symmetry relation (3.5) the left eigenvectors are related 
to the right ones : if t:)(p, q )  is a right eigenvector, then e:)( - p ,  q ) / p 2  is a left eigenvector 
with the same eigenvalue. We can choose the eigenvectors to be orthonormal (provided 
they are numbered appropriately) : 

(3.8) d4p$i’,(p, q)t:)(p, q’) = 6“””6(q - 4’). I 
We have then the expansion 

Because of relations (3.4) we need only three pairs of eigenvectors ( i  = 1,2.3) which are 
orthogonal to p or respectively p’ .  

If we write the transverse part of BL,, as 

(D;,(p,  P”,, = A,v(P, P’)lP2 
we obtain the following form for Dyson’s equation (3.1) : 

~ ( P - P ’ ) -  6’ s d4p“PWA(p, P”)A~,(P“~ P‘). (3.10) 

By iteration we may show that A has the same eigenvectors as P .  Therefore we can expand 
A in the same fashion as (3.9). We obtain 

(3.11) 

where we have included a longitudinal term which depends on the gauge via the ar- 
bitrary constant G. The apparent pole at p z  = 0 may be absent since it may eventually 
be cancelled by a contribution from a singularity of q(q). If the external field is a mono- 
chromatic plane wave field, the eigenvectors have contributions proportional to 
d ( p - q + r k )  with r = 0, k 1, f 2 , .  . . . Positive values of r correspond to a ‘fusion’ of 
the original photon with r laser quanta, negative values to the opposite process. 

The poles of the integrand of b’, given by 1 + E ’ K ~ ( ~ )  = 0, determine the dispersion 
laws for our system (vacuum plus external field). If another weak external wave field 
A ,  is superimposed, i t  has to satisfy Maxwell’s equations 

P(d,A, - d,,A,,) = jlp’ = E’ d4~‘7 t ,2 (~ ,  x‘)A‘(x’) + . . . (3.12) 

wherejl” is the polarization current induced by this field in the vacuum. The dots stand 
for higher-order contributions ( -  t 3  etc) which involve higher powers of A ,  and allow 
for a fusion or fission of non-laser photons stimulated by the laser field. The cor- 
responding tensor coefficients n contain three or more electron propagators and have 

i 
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thus far not been computed. If these contributions are neglected, equation (3.12) can 
be solved. The result is in momentum space (up to a gauge term) 

1 , .  

(3.13) 

with arbitrary functions h('). The 'photon excitation' of the medium is thus given by the 
poles of the propagator, as i t  must be. The nature of the spectrum has, of course. to be 
determined by calculation of n,,, and solution of the eigenvalue equations (3.7). We 
shall do this in the case of circular polarization below. 

4. The vacuum polarization tensor 

We shall now evaluate the expression for TC. equation (3.2). Sekeral representations of the 
electron propagator G are given in another paper (Mitter 1975, to be referred to as M). 
For the calculation of TC the form (M 4.3) with (M 4.13, 14) has turned out to be most 
convenient. The definition of the functions appearing in G and some useful formulae 
connecting them can be found in appendix I .  

A t  first we shall concentrate on some general properties of TC. From gauge invariance 
(3.4) we conclude that n,, depends on the laser field only viaf;,,, . Ifwe use a perturbation 
analysis in powers of the laser field for the Green function. we conclude from Furry's 
theorem that n,,\ has to be an even function of x,,,. Since scalar products of f;,,) can 
be reduced to k (cf (2.5)),  the dependence on the external field may be formulated in terms 
of the vectors 

Analysing in terms of light-like components (cf $ 2 )  we have 

P ,  = P I .  Pi = P I  
which means that the difference between p p  and p' ,  has to be proportional to k p  (thus we 
have, eg p 2  + p'' = 2 ( p p ' ) ) .  Therefore we find 

f:' = f:iJ = ( p i n ,  + poei,,)/po 

Since we have, in addition, 

(4.2) f ; ) f ( j M  = - 6'' 

we have only three independent invariants which we can take to be, eg, 

( P P I  ( P k ) ,  P 2  - P'2  = 2P"(P" - P 2  (4.3) 

In this context i t  is important to note that the only invariant containing the external 
field tensor 

~ p f i . ' ~ f j , p a ~ ~  = ( p k ) 2 6 i j  

is quadratic in the field. Introducing instead of p ,  p' the gauge invariant combinations 

(4.4) 
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(which are orthogonal to fb) we can write the most general expression for npv ,  which is 
consistent with all these requirements, in the following form : 

(4.5) ft,,\,(p, p ’ )  = + E:”’ = 6 ( p ,  - p:)6(pi - p i )  [G,,(A‘o’ + A‘L’) + f$’f!J’Bi)’] .  

Here the suffix (0) denotes the vacuum polarization in absence of the laser field, whereas 
(L) denotes the contribution from the latter, and we have introduced the tensor 

The coefficients A and Bi,  are functions of our invariants (4.3). The tensor decomposition 
(4.5) suggests the ansatz 

c$)(p,  4)  = g,a‘”(p, 4 )  + f f ’ b f ’ b  4 )  (4.7) 

for the right-hand eigenvectors of P,,, . The eigenvalue equation (3.7) then reduces to 
the one-dimensional integral equations 

(4.8) 

(4.9) 1 $ ( ( p p O A ( p >  p’)bf’(p’, 4 )  + B~:’(P,  p’P‘i’(p’3 4))  = - Ki(q )b f ’ (P ,  4 )  

where A = A“’+ A‘L’, p’ = (p: ,  , pr, p i ) .  Obviously, we have three types of solution: 

q ( P >  4 )  = g,a(P, Y) 

c ~ , ~ ’ ( P ,  4) = bi2*3)(p, q)ff’  

with eigenvalue ~ ~ ( 4 )  

with eigenvalues x2 ,3 (4 ) .  

We shall now turn to the actual evaluation of these functions. Since the details of 
the computation are rather tedious, we shall give only an outline. We start with the 
representation 

(4.10) 

and consider at first the quantity 

which can be evaluated by means of the standard techniques used in perturbation theory. 
If the expression (M 4.14) for the Green function is inserted, we obtain four terms, 
according to the two contributions from the Green function. Using symmetry proper- 
ties, we can argue that only the product of the first two terms is divergent and needs 
regularization. We use the gauge invariant analytic regularization method as described 
elsewhere (Breitenlohner and Mitter 1968) for the divergent contributions, which applies 
also here in spite of the fact that the mass m2 occurring in the denominators is now space- 
dependent and that different masses appear in the numerator and denominators: we 
may for instance rewrite the numerator by means of equation (M 4.10) in terms of m2 
and T and use the former quantity as a mass parameter in the spirit of that reference. 
The result is 

(4.12) n,,(4153 5‘)  = (quqy - q2t&v)n(0’(q2) + n$,’(415, 5’ ) .  
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The first term is just the vacuum polarization in absence of the laser field : 

(4.13) 

Here C is an arbitrary finite constant which is fixed by charge renormalization. If we 
want to identify e with the physical charge, we,have to take n“’(0) = 0, ie C = 0. For 
the other terms we obtain 

Here we have used the abbreviations 

(4.1 5a) 

(4.15b) 

Qo denotes the same expression with mz replaced by K’, its value for < = < - 5‘ = 0. 
This has now to be inserted into equation (4.10) and the momentum transform (3.3) 

has to be evaluated. This is trivial for the free term, which contributes only to A in 
equation (4.5). We obtain 

(4.16) 

The contributions from the laser field A‘L) and are most conveniently evaluated using 
light-like components. These are most natural in this context and simplify the calcula- 
tion considerably, since most of the integrations turn out to be trivial. The non-trivial 
integrations involve 

A‘O’(p, p’ )  = 6 ( p ,  - p;)n(O)(p2) .  

, 1  U = -[, 

It is convenient to introduce the variable 

414 3 Y .  U =- I 
4 2 9 ’  4 2  

2 = qU-k-L+P:) 

instead of q. and to perform at first the Fourier integral on 2, which can be done by 
means of the standard form 

All other types of integral appearing in the calculation can be derived from this formula 
by differentiation and/or partial integration with respect to the other variables. These 
partial integrations can also be used in order to rewrite the polarization tensor in such 
a way that gauge invariance becomes manifest. It has to  be observed that the boundary 
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terms encountered in these integrations are zero for a laser field of finite duration (for 
a field of infinite extent one has to worry about rapidly oscillating contributions, whose 
role is somewhat obscure). As a result of these manipulations we obtain 

The coefficients can be written as Fourier integrals 

where we have 

(4.17) 

(4.18) 

(4.19) 

From the symmetry properties of the P(j)  we may check that the relation (3.4) is fulfilled. 
The vectors (4.1) and (4.4) chosen for the decomposition (4.5) are singular if p or p' is 

parallel to k. In this case direct computation from equation (4.14) shows that 

n%)(p, P ' )  = 0 if pu = pi = 0. (4.20) 

For constant crossed fields (2.12) the Fourier integral on U' turns out to be trivial and 
one may obtain the results given by Ritus (1972a, b) for the polarization tensor. 

In the general case the integral on y can be performed. Transforming 

1 
@ + I = -  

1 -y2 

and using the formula 

we can express the coefficients in terms of Hankel functions of a single variable. It is 
convenient to transform [ = pi where 

p = -  21(pk)l 
K 2  ' 

The argument of the Hankel function is then 

mL 
w = 2- t  

K 2  

and we have 

(4.21) 

(4.22) 

(4.23) 
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Because of the last term, N(* ' (p)  and also ~ ~ , ~ ( p )  depend on the sign of p and we have 
N'*)(  - p )  = N'T)(p). A solution of equation ( 5 . 3 )  is obtained by the ansatz 

b'?(p, 4) = P'?(q)6(p - - 41, b'"(p, q )  = p'"(qp(p - q)  (5.5) 

and we obtain for the eigenvalues 

In terms of 

the eigenvectors read 

q ( p ,  4 )  = fPP"'(4)6(p - 4) +f,*&J - - 4)P" 

and we have the relation 

(5.7) 

We shall not discuss the consequences of the normalization, but remark only that the 
relation between left and right eigenvectors has to be handled with care, since the eigen- 
values are doubly degenerate : 

K l ( d  = K 1 ( - 4 ) ,  K 2 . 3 ( q )  = K 2 , 3 ( - q + ) .  

The orthonormality relation (3.8) is fulfilled if we identify 

1 F:"(p, q) = -€(I)( - p ,  -4)  
P 2  

1 
P 

cfJ'(p, 4)  = +'3' (  - p ,  - q+) .  

The representation ( 3 . 1 1 )  of the propagator can be evaluated with the result 

where we have used the abbreviation 

Ab) = A ( - P + )  = P : P 2 ( 1 + f z K 2 ( p ) ) ( l  +C2K3(p)) 
= (Pz - ~ ~ N ' + ) ( p ) ) ( p :  - t2N'-'(p+))- ~ ~ ( K ' ~ ' ( p p + ) ) ~ .  (5.10) 

From a naive consideration of Dyson's equation one might have guessed that the slight 
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non-diagonality of ft,, (which contains terms of the order d(p-p’f2k)) expands to 
arbitrarily high non-diagonal terms of the order d(p - p ‘  f 2rk). That these terms are 
absent and the propagator is relatively simple is due to the additional symmetry for 
circular polarization as mentioned in 9 2. In fact the essential properties of expression 
( 5 . 9 t t h e  conservation laws for p and p’ corresponding to the various basic tensors- 
can be derived from this symmetry without explicit calculation and remain valid to all 
orders of E’. The argument is given in appendix 2. Thus the only effect of higher con- 
tributions to nv, is to modify the functions W * )  and K‘3’ by terms of higher order in E’. 
The information which the propagator contains on the electromagnetic behaviour of our 
medium is displayed in the matrix elements for physical processes described by Feynman 
diagrams, which contain the propagator (eg Merller scattering). Since the quantities 
(4.23) are complex functions, the analytical structure of DL,, is important for these matrix 
elements. We shall discuss some of its aspects briefly. 

The pole structure of the propagator (5.9) is of main interest. The pole of the second 
term at p 2  = 0 is evident. This pole does not correspond to photon type excitations here, 
since g,, becomes purely longitudinal at p z  = 0. The term will however influence the 
potential between two charged particles in the medium. The other terms have apparently 
no poles at p 2  = 0, as can be seen from the second form (5.10). If we neglect the last 
term in this form (which is of the order c4), A factorizes and one of the factors is cancelled 
by the numerator in each of the two transverse contributions to the diagonal part of the 
propagator. Thus the poles in these terms are approximately given by 

(5.11) 2 - ’N“’ P - E (P)+O(r4) 

corresponding to excitations with left and right helicity respectively. In all cases of 
practical interest we have v’ 5 1 and p 5 1 .  From (4.23) and (A1.7) we may then conclude 
that N(” is of the order v 2 p 2 .  Thus we can replace condition (5.1 1) approximately by 

(5.12) 

where N(0)  means N(p)l,2=o. The argument leading to (5.12) breaks down if r 2 v 2 p 2  >> 1. 
In practice the formula may however be used even for relatively large values of p. 

The dispersion laws, which correspond to the poles (5.12). will be studied in 5 6. Both 
poles reduce to p’ = 0 if the laser is absent. The non-diagonal terms are smaller by a 
relative factor 2. Each of them changes the helicity and contains both poles. 

It is possible that there is a large number of other poles. If, for instance, the functions 
K~(P) exhibit an essential singularity at p 2  = cc (as in the case of constant, crossed fields 
(Ritus 1972a)), there must be infinitely many poles in the vicinity of that point due to 
Picard’s theorem. Now all three q(P)  can be shown to decrease at least as @’)- as 
p’ --t f cc along the real axis. So, with some smoothness assumptions, additional poles 
can only occur far from the real axis, if they exist at all. They would then correspond to 
rapidly decaying modes without much physical significance. 

Some further information about the analytical properties of the propagator can be 
obtained by investigating the corresponding behaviour of the functions K‘”. We use the 
representation (4.23) and consider the convergence properties for large t and fixed p. 
Since the variable w of (4.22) is large in this limit, we may use the asymptotic expansion of 
the Hankel functions 

P 2  2: c w ~ ) ( ~ )  + 0(€4) 
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If we expand the exponential according to 

we observe that the points 

correspond to singularities of the functions K “ ’ :  all derivatives with respect to p2 
beyond a particular one are divergent at these points, since the integral diverges at the 
upper limit. The corresponding contributions appear with a factor (E’u’)’, where 
1 = ( r ( ,  Irl 2. 

In the absence of the laser field the second-order vacuum polarization exhibits a 
single threshold singularity at  pz = 4 ~ ’  and is real for lower values of p z .  In the presence 
of the field the situation is entirely different: the mass becomes replaced by K: and, 
starting from p z  = 4 ~ :  in either direction, we find a sequence of equally spaced thres- 
holds (distance 2(pkl ) ,  multiplied with ascending powers of czu2,  so that the function is 
always complex. This is precisely the behaviour to be expected from Cutkosky’s 
theorem applied to diagrams of the type given in figure 1, corresponding to the net 
emission or absorption of n laser quanta. For very high n, the singularities are, of 
course, unphysical ; if too many quanta are absorbed, the laser beam is depleted and the 
description of the laser field as a classical, external field (on which our calculation is 
based) is no longer allowed. 

n t m  , r laser quanta 
_- -- / k >  

Figure 1. A typical diagram contributing to vacuum polarization in a laser field. The vertical 
wavy lines designate the interaction with the laser field. The indicated cut gives rise to a 
threshold at ( p + n k ) ’  = 4~~ which is shifted to ( ~ + n k ) ~  = 4~: if the contributions from all 
values of m and r are summed. 

It should be clear from this argument that the details of the analytical structure 
depend on the behaviour of mz for large argument i. For a finite laser pulse m2 differs 
from zero only in a finite region in i. The quantities B in equation (4.23) as well as mz 
depend, however, also on U‘ in this case and it is quite unclear whether and how the 
notion of an ‘effective’ mass K *  will emerge in the analytical structure. 
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6. Dispersion properties 

The propagator given in 0 5 contains various information on the physics of our medium, 
which has to be extracted in special applications. We shall discuss here only the impli- 
cations for wave fields, which can be deduced from the solution (3.13) of Maxwell's 
equations. The integral in equation (3.13) is trivial for the laser field (2.11). The result is, 
using (5.7), 

We observe that in principle both excitations i = 2,3 contribute to each helicity part, no 
matter how we choose hi@), and that the modes are non-monochromatic, as is usual in 
nonlinear optics. In practice the corresponding 'mixing' is, however, very small : if we 
notice that the argument p is restricted by the 6 functions in (6.1), we infer from relation 
(5.8) that fl(i'(p) and B(ll(p) are of the same order of magnitude. The factor of ( p z ) -  in 
front of the right-hand side of (6.1), however, has the consequence that the first term 
(proportional to f,) if i = 3, and the second term (proportional to f,*) if i = 2, are of 
order relative to the other one, respectively. Thus we have approximately two 
monochromatic modes with different dispersion laws and opposite helicity. According 
to the dispersion law (5.12) we may define, as usual, refractive indices n and absorption 
coefficients by 

The deviation of the refractive index from unity, 6 = n2 - 1, and the linear absorption 
coefficient 7 = 2ncpop/c become to order cz 

Thus the medium shows, within this approximate picture, polar birefringence and the 
two helicity components are absorbed differently. 

We shall now discuss the numerical behaviour of the functions 

W *  '(0) = K"'(O) + ~ ( ~ ' ( 0 )  i s g n ( p k ) ~ ( ~ ' ( ~ )  (6.3) 

which depend on the variable p,  equation (4.21) and the intensity parameter ?. Because 
of the oscillations of the integrand in the basic representations (4.18) and (4.23) the 
numerical evaluation is not without problems. The following method has proved to be 
useful : we extract from K"' a term in which m2 is replaced by its asymptotic value K:, 
writing 

K(i) = K(ifmZ + + ( ~ ( i ) ( ~ 2 )  - K(i)(m2 + .',)) = ~ g )  + KY). 
Using now the representations (4.23) we evaluate Ky' by numerical integration up to a 
fixed value in t. The remaining integral can be done analytically, using the asymptotic 
expansions for the Hankel functions (clearly this method does not work for too small 
values of p). The other term K:) can be evaluated either from (4.23) using the series 
expansions (A1.7) and integrating analytically (this method works for p 6 3), or from 
(4.18) by analytic integration on i and numerical integration on y. K($(p2) exhibits a 
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similar structure to the free vacuum polarization : there are thresholds at pz = 4 ~ :  and 
(pi k ) 2  = 4 ~ :  and the functions are, respectively, real (i = 2, 3) and purely imaginary 
(i = 4) below the lowest threshold. 

We have restricted our attention to values of the intensity parameter between 0.1 
and 1, which could possibly be reached with the strongest laser available at present or in 
the near future. Much higher values are hardly conceivable, and for small values of v 2  
one could use the well known results of perturbation theory (Euler 1936, Heisenberg 
and Euler 1936, Weisskopf 1936, Karplus and Neumann 1950, 1951, Schwinger 1951). 

For values of p up to 1 the first two terms in equation (6.3) dominate the real part. The 
simple power laws 

(6.4) - Re ( K ( 2 )  + 
K 2  K 2  

give a very good approximation for p 5 0.5 and a fair one up to p - 1. The relative 
difference Re(N‘”(0) - N(-)(O))/Re N(+’(O) increases linearly with p but is still small 
( -  0.06) at p = 1. Thus we conclude that in this region the square box diagram (ie the 
lowest approximation to n in an expansion in powers of v z )  gives the main contribution 
to the indices of refraction, even for v 2  - 1. As a further consequence the deviation of the 
refractive index from unity does not depend on the frequency U,  of the incoming photon 
(as long as p is not too large). If  its direction is nearly antiparallel to the laser, we obtain 
for a laser wavelength i. of 1.06 x m (Neodym-glass laser) and v2 = 1 the extremely 
small value of 

1 
- Re (iK(4)) -5 4.3 x 10-’v2p3 1 z - 7.8 X 10-4vzp2, 

83 N 7.3 xlo-’’ ;  (6.5) 
6, has approximately the same value. That these values are so small is mainly due to the 
fact that 6 is proportional to ( ; & K ) - ~ .  The effects could be made visible only by con- 
structing high-intensity lasers in the x-ray region. 

The imaginary part of (6.3) can be calculated with this method only for p 2 0.5 with 
limited numerical effort. Here no simple power laws like (6.4) have emerged, so that in 
contrast to 6 the absorption coefficients depend on the frequency of the incoming 
photon. Note that the box diagram does not contribute to the imaginary part below 
threshold! The imaginary part decreases rapidly with decreasing p and ti2, and is smaller 
by two orders of magnitude than the real part at p - 0.6. Here the difference between 
the ( + ) and ( -  ) parts is rather independent of p and v2. 

y 3  N 0.0019 cm-’ 

y3  -5 0.19cm-’ 

We find under the same conditions as were used for (6.5) : 

yz -5 0.0026 cm- ’, 
y2 -5 0.26 cm-’, 

for p = 0.5 

for p = 1 
(6.6) 

(these values of p correspond to photon energies of 25 and 50GeV respectively). In 
general y 3  is smaller than y, for not too high values of p. 

The reason for the rapid variability can be found in the analytic structure of the func- 
tion K“’ as discussed in 8 5. It has been mentioned that these functions have cusps at 
( p  rk)2 = 4~: .  This threshold condition reduces for pz = 0 to 

r p  = 4(1 + v 2 )  r = 0 , 1 , 2  , . . . .  (6.7) 

The minimum number ro of laser quanta which must be absorbed in order to render 
pair production possible increases as p decreases at  constant v2. Whenever p passes one 
of the thresholds (which are more and more densely spaced in p) ,  the corresponding 
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contribution vanishes. This connection has been noticed by Narozhnyi et a1 (1964) who 
calculated the cross section for pair production. The corresponding results agree with 
those derivable from the imaginary part as computed here. 

I t  is this threshold behaviour which is characteristic of deviations from perturbation 
theory : to any finite order in v 2  the thresholds would be determined by the bare mass IC’ 
rather than by the effective mass IC:. Unfortunately the first and second thresholds, 
which are situated at p = 5 and 2.5 for v 2  = 0.25, correspond to extremely high energies : 
for the conditions used above we need 250 GeV and 125 GeV photons respectively, and 
at these energies all kinds of strong interaction events would occur in experiments. 
Again lasers in the x-ray region could lead to visible effects at  moderate energies. The 
preceding arguments suggest that, if successful experiments on radiative corrections 
enhanced by laser fields can be done at all, they cannot be described by a constant 
crossed field. Even at low energies one has to be careful : the level splitting given by (6.4) 
is proportional to p3 and therefore does not agree with that calculated in a constant 
crossed field (Ritus 1969). 

I 

-r 51 

\ \ D  

I 2  5 io 20 50 I’ 
P 

0 

Figure 2. The functions -(KP)-* Re N(*’(O) which are proportional to the deviation 6 of 
the refractive index from umty ( v ~  = 0.25; A :  N+(O);  B. N - ( O ) ) .  

Figure 3. The functions - ( ~ ’ p ) - ’  Im N(*’(O)  which are proportional to the linear absorption 
coefficient y(v2 = 0.25; A :  N * ( O ) ;  B: N-(0 ) ) .  
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At present the dispersion curves given in figures 2 and 3 serve only as illustrations of 
the theory. The first two thresholds are quite obvious and we observe precisely the 
behaviour known from conventional optics. This is dictated by causality as expressed 
in the Kramers-Kronig dispersion relations. In particular we observe that the complex 
index of refraction is in the upper half plane, the dispersion is anomalous in regions of 
strong absorption and 6 passes zero at about the maximum of absorption. 
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Appendix 1 

For most calculations involving particles in laser fields the electron propagator G 
is needed. From several possible representations (cf Mitter 1975), one which looks at 
first glance rather complicated (M 4.3, 13) has proved to be the most useful for practical 
calculations. This representation contains a number of functions of the external field 
which show up in all expressions derived from G, eg in vacuum polarization (cf (4.14)). 
Here we shall state some properties of these functions which are useful, if not substantial, 
for all corresponding calculations. The functions depend on two variables t, 5’ or 
q = f(( + (’), [ = ( 5  - t‘) and are constructed from the building blocks 

in the following way : 

t2a2  
T = y ( ~ - b i b , )  

(A1.2) 

N = c(LiLi+ MjMJ- TI( 

R = N - 2cMiMj 

l? = -2i<LjcijMj. 

We have the following relations : 

1 a2T a2T 2T 
-~ = -+4LiLj-,. (A1.3) a; 2 all 4 a12 a i 2  i 

= -2c2LiM,. 
1 aT -=”, -- 

aT 

Furthermore we note that 

T, M,, ii are symmetric in 5 

N ,  Li,  R are antisymmetric in 5 
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and that all functions except M i  vanish for i: = 0. For a plane wave train of infinite 
extent and circular polarization (2.11) we have 

( M I ,  M 2 )  = (sinq,cosq)M(L), ( L , , L 2 )  = (-cosq,sinq)L(<) (A1.4) 

where the magnitudes L ,  M of these two-vectors can be expressed in terms of the first 
two spherical Bessel functions 

in the following way 

The matrix K,,, equation (4.15a), becomes 

cos q,  -sin q cos q 
-sin q cos q,  sin2 q 

K = (  ) (L2  + M2). (A1.5) 

Some additional relations are 

LiM,  = 0, T = c2a2-4M2, R = 2M(2L- i ;M)  (A1.6) 

N = 4 L M ,  k = 2icLM. 

Power series expansions may be obtained from 

Appendix 2 

(A1.7) 

A monochromatic circularly polarized plane wave field is invariant with respect to the 
following operation : translation by an arbitrary vector ar followed by a spatial rotation 
about the direction k of the field of angle k,ar. Let us apply the corresponding unitary 
transformation to the photon propagator in the laser field Dl,(x, x’) and choose 
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Due to invariance of the vacuum with respect to this operation we then have 

i(O+lO-)DL,,(x, x’) 

= (O+lTA,(x)A.(x’)lO-) 

= A- ’( - X ) p K A -  ’( -X)va 

x (O+ITA,(iA( - X)(X - x’))A,( -+A( - X ) ( X  - x’))IO-). (A2.1) 

If we have the wavevector k in the z direction, A(a) is essentially the rotation matrix 

0 0 

A(a) = [ A  coska sinka p) 
0 -sin ka cos ka 0 

(A2.2) 

\ o  0 0 l i  

and A -  ‘(a) = A( - a). Due to relativistic and gauge invariance the matrix element on the 
right-hand side of (A2.1) depends only on the scalars (A( -X)(X-X‘))~ = (x-x’)’ and 
k A ( - X ) ( x - x ’ )  = k(x-x’) which are both independent of X .  From that and (A2.1, 2) 
we conclude that the longitudinal and time-like components D ; 3 ,  obo, D;, , Db3 are 
independent of X and, in momentum space, become proportional to GCp-p’). As to the 
transverse left- or right-handed components A ( * )  = A ,  f i A , ,  we find 

(0, I TA *(x)A ‘(x’)lO- ) = e’ 2ikX(O+ 1 T A  *(+A( - X ) ( x  - x’))A ’( - $A( - X ) ( x  - x‘))JO-) 

( o , ~  TA *(x)A T ( ~ ‘ ) ~ o - )  = (0, I TA *($A( - X)(X - x ’ ) )A  T (  - +A( - X)(X - x’))Jo-) 

and conclude in the same way that the components = (O+ITA’*A’IO-) which 
preserve the left- or right-handedness become diagonal in momentum space whereas 
those which change it become proportional to G(P - p ’  f 2k). The mixed components 
Dj,,  Ofko etc become by the same argument proportional to G(p-p’f k). As this is 
forbidden by Furry’s theorem they have to vanish, which we already know from the 
tensor decomposition (4.5). 

So we have established the general structure of (5.9) as to be valid to all orders of c2.  
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